SECTION 4

DENSITY OF ROCKS

by R. A. Daly, G. Edward Manger, and Sydney P. Clark, Jr.

CONTENTS

		PAGE
Table 4-1.	Average densities of holocrystalline igneous rocks	20
	Average densities of natural glasses	20
3.	Density of crystalline rock and corresponding glass (artificially pre-	
	pared)	21
4.	Porosity and bulk density, dry and saturated, of sedimentary rocks	23
5.	Average densities of metamorphic rocks	26

Rock	Number of samples	Mean density	Range of density
Granite	155	2.667	2.516-2.809
Granodiorite	11	2.716	2.668-2.785
Syenite	24	2,757	2.630-2.899
Quartz diorite	21	2.806	2.680-2.960
Diorite	13	2.839	2.721-2.960
Norite	11	2.984	2.720-3.020
Gabbro, including olivine gabbro	27	2.976	2.850-3.120
Diabase, fresh	40	2.965	2.804-3.110
Peridotite, fresh	3	3,234	3.152-3.276
Dunite*	15	3.277	3.204-3.314
Pyroxenite	8	3.231	3.10 -3.318
Anorthosite	12	2.734	2.640-2.920

Table 4-1. Average densities of Holocrystalline Igneous Rocks (R. A. Daly)

^{*} From Birch, Jour. Geophys. Res., 65, 1083, 1960

TABLE 4-2.	AVERAGE L (R.	A. Daly)	NATURA	l Glasses
	NtC	~		

Glass	No. of determinations	Range of density	Mean density	Ref.	
Rhyolite obsidian	15	2.330-2.413	2.370	2	
Trachyte obsidian	3	2.435-2.467	2.450	2	
Pitchstone	4	2.321-2.37	2.338	1	
Andesite glass	3	2.40 -2.573	2.474	î	
Leucite tephrite glass	2	2.52 - 2.58	2.55	î	
Basalt glass	11	2.704-2.851	2.772	2	

REFERENCES FOR TABLE 4-2

- 1. George, Jour. Geology, 32, 353, 1924
- 2. Tilley, Min. Mag., 19, 275, 1922

Table 4-1 was taken by Daly from a slightly longer compilation in his *Igneous rocks* and the depths of the earth (New York, McGraw-Hill Book Co., 598 p., 1933). It is virtually the same as the list in the first edition of the Handbook of Physical Constants, but with more extensive data for dunites. For further data on the densities of igneous rocks see Tables 9-2, 21-2, and 21-4.

Table 4-4 lists a selection of values of porosity and density of sedimentary rocks. The selection illustrates porosity and density variations in relationship to rock type, and to age, locality, and depth of sample.

Porosity is expressed as either total or apparent porosity. Total porosity is a measure of the total void volume and includes those pores which may be sealed off, as well as those which are connected with the surface of the test specimens. It is based on differences in measurement between total or bulk volume (V_B) and grain volume (V_G) . The total porosity (P_T) by per cent is

$$P_T = 100 \left(1 - \frac{V_G}{V_B} \right) \tag{1}$$

TABLE 4-3. DENSITY OF CRYSTALLINE ROCK AND CORRESPONDING GLASS (ARTIFICIALLY PREPARED)
(R. A. Daly)

	Den	eitv	Difference per cent of rock	
	Rock	Glass	density	Ref.
Granite, Shap Fells	2.656	2.446	7.90	3
Granite, Peterhead	2.630	2.376	9.66	3
Syenite, Plauen'scher Grund	2.724	2.560	6.02	3
Tonalite, New Zealand	2.765	2.575	6.87	3
Diorite, Guernsey	2.833	2.680	5.40	3
Diorite, Markfield	2.880	2.710	5.90	3
Gabbro, Carrock Fell	2.940	2.791	5.07	3
Olivine dolerite, Clee Hills	2.889	2.775	3.95	3
Dolerite, Rowley Rag	2.800	2.640	5.71	3
Dolerite, Whin Sill	2.925	2.800	4.27	3
Diabase, Palisades	2.975	2.761	7.19	1
Diabase, Vinal Haven	2.96	2.76	6.8	2
Eclogite	3.415 ·	2.746 (?)	19.6	4

REFERENCES FOR TABLE 4-3

- 1. Day, Sosman, and Hostetter, Am. Jour. Sci., 37, 1, 1914
- 2. Dane, E. B., unpublished
- 3. Douglas, Geol. Soc. London, Quart. Jour., 63, 145, 1907
- 4. Joly and Poole, Philos. Mag., 3, 1242, 1927

Alternatively, and more usually, grain density (D_G) is substituted for grain volume, and bulk density (D_B) for bulk volume. Total porosity by per cent correspondingly is

$$P_T = 100 \left(1 - \frac{D_B}{D_G} \right) \tag{2}$$

Apparent porosity, otherwise called effective or net porosity, excludes sealed-off or occluded pores. It is based on a measurement of the pore volume (V_P) which intercommunicates and is connected with the surface of the test specimen. Apparent porosity (P_A) by per cent is

$$P_A = 100 \left(\frac{V_P}{V_B}\right).$$

The method of determining porosity may affect porosity values more than true differences between total and apparent porosity. For 10 specimens of fire brick Hartmann (13) found that the average total porosity, determined by the grain density-bulk density relationship, was 25.5 per cent where bulk volume was obtained by the displacement of water by a previously wetted specimen, but 24.6 per cent where bulk volume was obtained by mercury displacement. Nutting (25) stated that in the determination of grain density by pycnometry the adsorption of water by very finely

powdered quartz grains or other material may cause an error of 1 or 2 per cent in the determination of grain density. Apparently, however, such large errors due to the adsorption of water do not commonly occur in practice. Hirschwald (17) showed that an erroneous large deficiency of apparent porosity may result from obtaining pore volume by the imbibition of water under atmospheric pressure. He obtained better results by letting the specimens imbibe water for 3 hours under a partial vacuum equal to the vapor pressure of water at room temperature, but he had to apply a pressure of 50–150 atmospheres to obtain the optimum saturation of the pores.

Among the earlier publications which give extensive data on porosity and bulk density is that of Buckley (5), who determined the porosity of building stones of Wisconsin by slowly immersing the specimens in boiling water and then maintaining a reduced pressure of one twelfth of an atmosphere on the specimens for 36 hours. Gary (9) listed the bulk density of numerous building stones, and the total porosity as determined by the grain density-bulk density relationship. Moore (22) determined the porosity of specimens of sedimentary rocks by saturating them with water under a vacuum of 29 inches of mercury and listed many determinations. Fuller (8) calculated the porosity of some sedimentary and other rocks by using the data of Geikie, Delesse, and Merrill, but the original data were obtained from the imbibition of water under atmospheric pressure. Sorby (33) gave the porosity of sandstone, shale, and slate obtained by imbibition of water for several days under a partial vacuum resulting from the condensation of steam. Hirschwald (17) determined the porosity of many sandstone, limestone, and slate specimens of building stone by saturating the specimens under a partial vacuum and then applying a pressure of 150 atmospheres. Grubenmann, Niggli, and others (11) have presented extensive data on the total porosity and bulk density of the building and roofing stones of Switzerland. Kessler (18) determined the bulk density of commercial marbles of the United States and derived total porosity by the grain density-bulk density relationship.

More recently Melcher (21) gave a critical discussion of previous methods of porosity determination and presented many determinations of bulk density and total porosity of oil sands obtained by the grain density-bulk density relationship. Hedberg (14, 15) and Athy (1) determined the total porosity and bulk density of subsurface samples of shale with particular reference to the relationship of compaction to the thickness of overburden. Stearns (34) determined the bulk density and total porosity of many samples of water-bearing rock. Fancher, Lewis, and Barnes (6) gave extensive references to the various methods of porosity determination, summarized many of the methods and techniques evolved up to the year 1933, and presented many original porosity determinations. A recent extensive list of porosity determinations of oil sands is given by Rall, Hamontre, and Taliaferro (29). In their method pore volume is determined by the pressure and volume relationships of a gas system with and without a rock specimen.

Average values for the porosity of sedimentary rocks have been given by Barrell (2) as: shale, 8.2 per cent; sandstone, 14.8 per cent; limestone, 5.3 per cent; and all sedimentary rocks, 8.5 per cent. Additional data since the publication of Barrell's summary indicate that the average value of 8.2 per cent porosity for shale may be low. Athy's graph (1) for Pennsylvanian and Permian shales from structurally disturbed areas show an average of 8.8 per cent for a depth range from 1000 feet to 5000 feet, but Hedberg's data (15) for undisturbed Tertiary shale show an average porosity of 19.8 per cent for a depth range from 219 feet to 7994 feet.

For further data on the density of sediments and sedimentary rocks, see Tables 21-5 and 21-11.

Table 4-4. Porosity and Bulk Density, Dry and Saturated, of Sedimentary Rocks* (G. Edward Manger)

			(G. Edward Ma	1.501)						
Formation	Age	Locality	Depth of sample, feet	Number of samples	Porosi Aver.	ity, per Min.		Sat'd. bulk density (average) g per cm ⁻³	Ref.	Porosity method: T (Total) A (Apparent)
			SANDSTONE							
"Mount Simon" ss.	Cambrian	W. Va., Wood County	13,005–13,065	9	.7	.2	2.5	2.70	30	Α
Southern "Potsdam" ss.	Cambrian	Wis.	quarry	14	11.4	4.8	28.3	2.41	5	Α
Northern "Potsdam" ss.	Cambrian	Wis.	quarry	16	19.4	10.4	22.6	2.32	5	A
St. Peter Ss.	Ordovician	Ark., Ozark Plateau	outcrop	12	8.8	3.6	14.1	2.50	4	T
Bradford ss.	Devonian	Pa.	≈600-≈2300	297	15.0	6.0	23.3	2.40	7	T
					(assume	ed grain	n densi	ty, 2.65 g cm ⁻	3)	
Chemung Formation (ss's.)	Devonian	Pa.	$\approx 1700 - \approx 2300$	49	9.5	4.5	22.2	2.51	20, 21	T
Berea Ss.	Mississippian	Ohio, W. Va.	0–2160	18	14.1	4.7	19.5	2.39	20, 21 3, 36	T, A
Atoka Formation	Pennsylvanian	Ark.:								_
(and other ss's.)	·	Ozark Plat.	outcrop	17	12.3	4.7	19.8	2.44	4	<u>T</u>
		Ark. Valley	outcrop	35	7.8	0	20.6	2.51	4	T
		Ouachita Mts.	outcrop	25	5.1	0	10.4	2.56	4	T
Bartlesville sand	Pennsylvanian	Okla.	1570-2680	26	18.3	7.6	32.0	2.40	20	Ţ
Bunter Ss.	Triassic	Gt. Britain	outcrop	18	20.4	5.8	30.8	2.29	22	A
Keuper Ss.	Triassic	Gt. Britain	outcrop	16	22.6	16.5	28.6	2.25	22	A
Woodbine sand	Cretaceous	Tex.	2436–3701	10	24.7	19.0	32.0	2.25	28	A
Sandstones and siltstones	Cretaceous	Montana, eastern	outcrop	22	33.7	22.6	38.3	2.17	34	T
Sandstones	Cretaceous	Wyo.	0-3187	38	19.7	8.8	27.0	2.32	20, 21	T T
Sandstones	Miocene	Switzerland	quarry	15	18.7	13.3	22.1	2.37	11	1
					(dip	s 7° or	iess)			
		LIMESTONE,	DOLOMITE, CHA	LK, AND	MARBLE					
Ellenburger Group (1s. and dol.)	Ordovician	Tex., Llano County	outcrop	57	3.0	.1	12.6	2.75	10	T
Beekmantown Group (dol.)	Ordovician	W. Va., Wood County	10,531–11,945	56	.4	.1	1.1	2.80	30	Α
Black River Ls.	Ordovician	Ontario	quarry	11	.46	.07	1.67	2.72	26	Α
Niagara Dolomite	Silurian	Wis.	quarry	14	2.9	.5	6.7	2.77	5	Α

Formation	Age	Locality	Depth of sample, feet	Number of samples			er cent Max.	Sat'd. bulk density (average) g per cm ⁻³	Ref.	Porosity method: T (Total) A (Apparent)
.		LIMESTONE, DOI	LOMITE, CHALK, A	ND MARBLE	Cont	inued				
Limestone	Carboniferous	Gt. Britain, Midlands	outcrop	24	5.7	2.2	14.9	2.58	27	T
Marl	Carboniferous	Russia	subsurface	19	8.2			2.63	24	T
Oolites	Jurassic	Gt. Britain	outcrop	5	14.6	5.5	24.0	2.44	22	Ā
Limestones	Jurassic	Switzerland	quarry	114	3.6	.4	25.6	2.66	11	Ť
			1 7			8° or i		2.00		•
Glen Rose Ls.	Cretaceous	Tex.	20.5-30.5	10	16.8	16.0	18.8	2.37	28	Α
Chalk	Cretaceous	Gt. Britain	outcrop	3	28.8	17.6	42.8	2.23	22	Ā
Limestone	Cretaceous	Switzerland	quarry	29	4.3	.4	18.3	2.65	11	Ť
			• •		(dips	10° or	more)			-
Green River Fm.					• 1		,			
(marlstone)	Eocene	Colo.	mine	11	2.9	.2	12.0	2.26	36	Α
		SH	ale, Claystone,	AND SLATE		•				
Shale	Pennsylvanian	Okla.	1000		17			2.42	1	graph
	·		3000		7			2.59	i	graph
			5000		4			2.66	î	graph
Shales	Cretaceous	Wyo., Mont.	outcrop	9	29.5	23.8	37.6	2.17	31	T T
Shale, nearly horizontal	Oligocene and	Venezuela	≈60Ô	6	33.5	31.3	35.8	2.06	15	Ť
and undisturbed	Miocene		≈2500	9	25.4	22.9	28.9	2.25	15	Ť
			≈3500	9	21.1	17.8	25.6	2.35	15	Ť
			≈ <u>6</u> 100	3	9.6	9.1	10.6	2.52	15	Ť
			≈ 7850	2	10.4	10.3	10.4		15	T
		SAND, CL	AY, GRAVEL, ALL	UVIUM, AND	Soils					
Cape May Fm. (sd.)	Pleistocene	N.J.	mostly pits	12	38.9	30.8	45.3	1.93	34	T
Loess soil	Quaternary	Idaho	surface	3	61.2	53.2	69.4	1.61	34	Ť
Fine sand	Quaternary	Calif.	sea-floor	54	46.2		• •	1.93	12	Ť
Vous 6ma aand			sediments,							
Very fine sand			0–1 inch	15	47.7	• •	• •	1.92	12	†
Sand-silt-clay			below the	2	74.7			4.44	4.5	
Saira Sirt-City			depositional surface	3	74.7	• •	• •	1.44	12	†
Mud	Quaternary	Hudson River							4.0	
	Qualtinary	Transon Kiver	submerged crate	• •	88.2	• •	• •	• •	19	†

		R. A	A. Dal	y, G. E.	Manger	, and	d S. P. Clark, Jr.: Density of Rocks 25
- ;	A	A	¥	T, A			Kessler, U.S. Bur. Stds. Technol. Paper 122, 1919 Lewis, Geol. Soc. America Bull., 35, 557, 1924 Melcher, Am. Inst. Min. Metall. Engrs. Trans., 65, 469, 1921 Melcher, Am. Inst. Min. Metall. Engrs. Trans., 65, 469, 1921 Moore, Geol. Soc. Liverpool Proc., 9, 129, 1904 Moore, Marine Biol. Assoc. (Gt. Brit.) Jour., 17 (new ser.), 325, 1931 Nevolin, Galakfionov, and Serova, Priklad. Geofiz., no. 22, 129, 1959 Nutting, Am. Assoc. Petroleum Geologists Bull., 14, 1337, 1930 —quoted in Geol. Soc. Am. Spec. Paper 36, 25, 1942 Parks, Report on the building and ornamental stones of Canada, Canada Dept. Mines, 1912 Parsons, Geol. Mag. (Gt. Brit.), 59, 51, 1922 Prefifer and Dienemann, Preusz. Geol. Landesanstalt Jahrb., 49, 304, 1928 Plummer and Tapp. Am. Assoc. Petroleum Geologists Bull., 27, 64, 1943 Rall, Hamontre, and Taliaferro, U.S. Bur. Mines Rept. Inv. 5025, 1954 Robertson, E. C., written communication, 1959 Rubey, U.S. Geol. Survey Prof. Paper 165-A, 1930 Stabw, quoted in Meinzer, U.S. Geol. Survey Water-Supply Paper 489, 8, 1923 Sorby, Geol. Soc. London Quart. Jour., 64, 171, 1908 Stearns, U.S. Geol. Survey Water-Supply Paper 596, 1927
16	32	23	23	18, 22			Kessler, U.S. Bur. Stds. Technol. Paper 123, 1919 Lewis, Geol. Soc. America Bull., 35, 557, 1924 Melcher, Am. Inst. Min. Metall. Engrs. Trans., 65, 469, 1921 Melcher, Am. Inst. Min. Metall. Engrs. Trans., 65, 469, 1921 Moore, Geol. Soc. Liverpool Proc., 9, 129, 1904 Moore, Geol. Soc. Liverpool Proc., 9, 129, 1904 Moore, Marine Biol. Assoc. (Gt. Brit.) Jour., 17 (new ser.), 325, 1931 Nevolin, Galakfionov, and Serova, Priklad. Geofiz., no. 22, 129, 1959 Nutting, Am. Assoc. Petroleum Geologists Bull., 14, 1337, 1930 Parks, Report on the building and ornamental stones of Canada, Canad Dept. Mines, 1912 Parsons, Geol. Mag. (Gt. Brit.), 59, 51, 1922 Perfifer and Dienemann, Preusz. Geol. Landesanstalt Jahrb., 49, 304, 19; Plummer and Tapp, Am. Assoc. Petroleum Geologists Bull., 27, 64, 199 Rall, Hamontre, and Taliaferro, U.S. Bur. Mines Rept. Inv. 5025, 1954 Robertson, E. C., written communication, 1959 Shaw, quored in Meinzer, U.S. Geol. Survey Water-Supply Paper 489, 1923 Sorby, Geol. Soc. London Quart. Jour., 64, 171, 1908 Stearns, U.S. Geol. Survey Water-Supply Paper 596, 1927
:	:	:	:	2.75			 Kessler, U.S. Bur. Stds. Technol. Paper 123, 1919 Lewis, Geol. Soc. America Bull., 35, 557, 1924 Melcher, Am. Inst. Min. Metall. Engrs. Trans., 65, 465 — Am. Assoc. Petroleum Geologists Bull., 8, 716, 19 Moore, Marine Biol. Assoc. (Gt. Brit.) Jour., 17 (new St. Moore, Marine Biol. Assoc. Petroleum Geologists Bull., 14, 125 Nutting, Am. Assoc. Petroleum Geologists Bull., 14, 157 Parks, Report on the building and ornamental stones of Dept. Mines, 1912 Parsons, Geol. Mag. (Gt. Brit.), 59, 51, 1922 Petrons, Geol. Mag. (Gt. Brit.), 59, 51, 1922 Popt. Mines, 1912 Pummer and Tapp, Am. Assoc. Petroleum Geologists Bull. Hamontre, and Taliaferro, U.S. Bur. Mines Rep 33, Rubey, U.S. Geol. Survey Prof. Paper 165-A, 1930 Shaw, quored in Meinzer, U.S. Geol. Survey Water-Siphy, Geol. Soc. London Quart. Jour., 64, 171, 1908 Stearns, U.S. Geol. Survey Water-Supply Paper 596, 18
:	:	87	80	2.1 ities)			Technol. ica Bull., Metall. um Geol Depol Pro CG. (Gt. nd Scor. (Gt. nd Scor. (Gt. nd Scor. (Gt. nt. Brit.), Preusz. (Preusz. (Pr
pən.	:	80	72	.4 local			Amer Amer Min
Continued 55	80-90	82	75	.7 .4 2. (43+ localities)		4-4	1.S. Bur. ol. Soc. 1 Am. Inst. Assoc. P Assoc. B Assoc. P Assoc. B Assoc. P Assoc. B Assoc. P Assoc. B
AND SOILS	:	6	6	ıs 112		TABLE	
vel, Alluvium, so ft below	:	0–2.5 cm in	mud 22.5–25 cm in mud	MISCELLANEOUS quarry		REFERENCES FOR TABLE 4-4	8ta. Bull. 31, 1982, 40, 755, 82, 1926 ew York, in, Born-
SAND, CLAY, GRAVEL, ALLUVIUM, AND SOILS Hudson River 50 ft below	Mississippi River	Clyde Sea		U.S.A., Great Britain	.S. Geological Survey ater.	REFER	Geologists Bull., 14, 1, 1930 4, 1914 y Bull. 18, 1915 m Geologists Bull., 21, 67, 1937 nn At Hist. Survey Bull., 4, 401, 18 enn. State Coll. Min. Indus. Expt.; Geologists Bull., 18, 191, 1934 ter-Supply Paper 160, 59, 1906 nanstalten Berlin, 5, 243, 1898 ssoc. Petroleum Geologists Bull., or. Geutscher Eisenhüttenleute, Ber. m Geologists Bull., 10, 1035, 1926 41, 1936 di and compressed air tunneling, N 1922
Quaternary	Quaternary	Quaternary		<i>د</i> ٠	the Director, U		um Geologists B 1, 214, 1914 urvey Bull. 18, 1 oleum Geologist ses, Parer-Supply P succhanstalten B m. Assoc. Petrol Geol. Schweiz, vm. Assoc. Petrol se Ver. deutscher roleum Geologis 31, 241, 1936 Shield and comp 291, 1922 er bautechnischer
Silt	Newly deposited material	Soft mud		Marble	* Publication authorized by the Director, U.S. Geological Survey. † Pore volume by volume of natural-state water.		 Athy, Am. Assoc. Petroleum Geologists Bull., 14, 1, 1930 Barrell, Jour. Geology, 22, 214, 1914 Bownocker, Ohio Geol. Survey Bull. 18, 1915 Bownocker, Ohio Geol. Survey Bull. 18, 1915 Buckley, Wisconsin Geologists Bull., 21, 67, 1937 Buckley, Wisconsin Geologists Nat. Hist. Survey Bull. 4, 401, 1898 Fancher, Lewis, and Barnes, Penn. State Coll. Min. Indus. Expt. Sta. Bull. 12, 65, 1933 Fettlee, Am. Assoc. Petroleum Geologists Bull., 18, 191, 1934 Fuller, U.S. Geol. Survey Water-Supply Paper 160, 59, 1906 Gary, Mitt. Kgl. tech. Versuchanstalten Berlin, 5, 243, 1898 Goldich and Parmelee, Am. Assoc. Petroleum Geologists Bull., 31, 1982, 1947 Gubennmann et al., Beitr. Geol. Schweiz, Geotech. Ser. 5, 1915 Hamilton and Menard, Am. Assoc. Petroleum Geologists Bull., 40, 755, 1956 Hartmann, Fachausschüsse Ver. deutscher Eisenhüttenleute, Ber. 82, 1926 Heeberg, Am. Assoc. Petroleum Geologists Bull., 10, 1035, 1926 Am. John Sci., [5], 31, 241, 1936 Hewett and Johannesson, Shield and compressed air tunneling, New York, McGraw-Hill Book Co., 291, 1922 Hirschwald, Handbuch der bautechnischen Gesteinprüfung, Berlin, Borntraeger, 1912

There appear to be few systematic studies of the densities of metamorphic rocks; most of the entries in Table 4-5 refer to rocks from New England. Compilation of such a table is complicated by the fact that geologists tend to classify metasedimentary rocks on a stratigraphic basis, rather than on mineralogy. The mineralogy, and hence the density, of a given formation depends in part on the grade of metamorphism, which differs from place to place. The situation may be further complicated by banding and layering, which can cause heterogeneity in the rock on a scale of a few inches to many feet. This makes it difficult to sample adequately and accurately.

For further data on the densities of metamorphic rocks see Tables 9-2, 21-2, and 21-4

TABLE 4-5. AVERAGE DENSITIES OF METAMORPHIC ROCKS (Sydney P. Clark, Jr.)

Rock	Number of samples	Mean density	Range of density	Ref.
Gneiss, Chester, Vt.	7	2.69	2.66 -2.73	1
Granite gneiss, Hohe Tauern, Austria Gneiss, Grenville, Adirondack Mtns.,	19	2.61	2.59 -2.63	3
N.Y. Oligoclase gneiss, Middle Haddam	25	2.84	2.70 -3.06	1
area, Conn. Quartz-mica schists, Littleton Fm., N.H.	28	2.67	• •	4
(high-grade metamorphism) Muscovite-biotite schist, Middle	76	2.82	2.70 -2.96	1
Haddam area, Conn. Staurolite-garnet and biotite-muscovite	32	2.76		4
schists, Middle Haddam Area, Conn.	22	2.76		4
Chlorite-sericite schists, Vt.	50	2.82	2.73 -3.03	i
Slate, Taconic sequence, Vt.	17	2.81	2.72 - 2.84	1
Amphibolite, N.H. and Vt. Granulite, Lapland	13	2.99	2.79 -3.14	1
hypersthene-bearing	7	2.93	2.67 - 3.10	5
hypersthene-free	5	2.73	2.63 - 2.85	5
Eclogite	10	3.392	3.338-3.452	2

REFERENCES FOR TABLE 4-5

- 1. Bean, Geol. Soc. America Bull., 64, 509, 1953
- 2. Birch, Jour. Geophys. Res. 65, 1083, 1960
- 3. Clark, Geophys. Jour. 6, 9, 1961
- 4. Eaton and Rosenfeld, Rept. XXI Session, Int. Geol. Congr., Pt. II, 168, 1960
- 5. Eskola, Am. Jour. Sci., Bowen Volume, 133, 1952